DSN Progress Report 42-45

March and April 1978

An Algorithm for Generating an m-ary Summation Tree

M. Sievers
Communications Systems Research Section

An algorithm is presented for generating an m-ary summation tree. The algorithm is
completely general and may be applied to any length input string. For an N length
sequence summed in groups of my at each level %, a maximum of 3L - 2 storage is

required where

L
Q=

Hmsz

1

=N

A special case of the general m-ary tree where all mg are equal will be used to smooth
data in a radio-frequency interference experiment. The maximum storage required when
mq = m for all £ reduces to the closed form 3 log,, N - 2.

l. Introduction

A study is in development that will determine the magni-
tude and nature of radio-frequency interference (RFI) in the
vicinity of the Goldstone tracking complex. Spectra collected
in the RFI experiments will be smoothed by a binary summa-
tion tree. This tree is a special case of the more general m-ary
summation tree.

An me-ary summation tree is the tree formed by initially
dividing an input string of length N into groups of length m,
each. There will be g, =L N/m,_| groups. The notation_ X _|
denotes “the integer part of X.” The m, elements in each

group are summed to form a group sum. The resulting group
sums form the first level in the tree.

The g, first level group sums are added in m,-tuples to
form the group sums of the second level. Clearly, the number
of groups at the second level will be L_g, /m,_l. In general, the
number of groups at level L will be L_g; _ ,/m, _l. The process
is shown pictorially in Fig. 1 for N=16, m, =2, m, =4, and
my =2.

Mg-tuple additions are performed until either a single
result is formed representing the sum of all inputs, or the tree

147



is incomplete. An incomplete tree is one in which at some level
2, g, groups are present where g, modulo m, is not zero. If the
tree is incomplete, the final sum (sum of all inputs) is not
formed since there will be one or more levels in which it was
not possible to form an m,, group.

In order for the final sum to be calculated, it must be
possible to form m, groups at each level in the tree. This
implies that there must be an L such that

L
my, =N (1)
e=1

The value of L is the depth of the tree.

In the remainder of this article, only complete trees will be
considered. Incomplete trees are of no practical value in the
RFT experiments.

It is worth noting that in generating the m-ary summation
tree, at most V- 1 additions are required. This is equal to the
minimum number of additions needed to add a string of N
numbers. The tree structure, therefore, does not add overhead
to the number of additions required to sum the N length input
string.

For small &V it might be reasonable to store each input word
and summation result in memory. However, for large V this is
not practical even if the summations are done “in place.” The
algorithm presented in the next section requires only 3L - 2
storage, where L is the depth of the m-ary tree.

Il. m-ary Summation Tree Algorithm

The m-ary summation tree algorithm presented below
makes the following assumptions:

(1) Input data are available serially.
(2) An accumulator is present for holding partial sums.

(3) When a group sum is completed it is immediately
output.

(4) Once a level € sum is formed, the level £ - 1 addends
from which it was formed are no longer needed.

It is easy to show that only L data storage is necessary to
generate the summation tree. To start, it is clear that only one
storage word is needed to generate the first level in the tree.
This is because once the first group sum is completed in the

148

accumulator, it is moved to the storage location. The accumu-
lator is then free to accumulate the next group sum. After this
second group sum is available, it is added to memory and the
result placed back in memory.

A second level group sum is produced when first level
storage holds the sum of m, - 1 first level group sums and ihe
accumulator contains an additional first level group sum. The
level two group sum is obtained by adding the accumulator to
level one storage. The first level storage is then free to collect
the next m, - 1 first level groups sums.

The level two group sum is left in the accumulator after its
formation. This situation is identical to the situation in the
first level when a first level group sum is held in the accumula-
tor. Therefore, it follows that only one storage element will be
needed at the second level.

In general, any time m, group sums are available at the
Q- 15t Jevel (mg -1 held in ¢~ 1 memory and one in the
accumulator), these are added to form a level £ group sum.
This sum is left in the accumulator, and again the situation
reduces to the level one situation. Therefore, only one storage
element is needed at each level in the tree, except the last.

No storage is needed at level L, because when the level L
sum is formed in the accumulator, it is immediately output.
Since there are L levels, there will be need of L - 1 storage
locations in the tree. Including the accumulator, a total of L
data storage is required.

An algorithm has been designed to implement the recursion
described above. Figure 2 shows the flow chart of the
algorithm.

The algorithm makes use of group counters and level coun-
ters. Group counters keep a count of the number of group
sums stored in a given level storage. Level counters count the
number of times a word of a given level has been formed.
Since there will be L - 1 storage cells, and since there is no
need to count the number of level L sums formed (this count
will be zero until the final sum is available at which time it
becomes one), L - 1 group and level counters are necessary.

The counters are used to keep track of which original input
elements have been added to form a given level sum. Labeling
the original inputs, 1,2, 3, ... N, then the ct" sum formed at
the jth level will be the sum:

cr,
]

i=1+(c-1)r,



where

;
r= 11 me

R=1

The vector of group counters (GC) can be used to indicate
the total number of inputs processed. GC is a multiple radix
number where the radix vector R is composed of the elements
rp If each group counter gc, is interpreted as a radix 7, digit,
then the number of inputs processed at any time is:

M-

ry 8¢, 3)

o
n
—

The total storage required for this algorithm is the sum of
the storage needed to generate the tree plus the number of
counters. From the discussion in this section, L storage is
needed to generate the tree, and 2(L - 1) counters are re-
quired from Eq. (1). This total equals 3L - 2 where

L
IT my =~ @)

=1

lil. Special Case: m¢ = m for all ¢

The case when all level group sizes are the same is a special
case of the general m-ary tree that greatly simplifies Egs. (1) to
(4). This case is also much simpler to implement than the
general case. This makes it more attractive to build hardware
for as will be done in the RFI experiments for m = 2.

Formation of m size groups at each level leads to the closed
form

L= logm N (5
for Eq. 1. Since in this case r; = m?, Eq. (2) simplies to

cm]

3 ©

i=1+(c=1)m’

for the ct? sum at the jth level. Eq. (3) for the total number of
inputs processed reduces to

IogmN—l

> ey @)

=1
Finally, Eq. (4), the total storage required, becomes

3log N-2 (8)

IV. Sample Program

A portion of a FORTRAN program that implements the
algorithm of Fig. 2 along with sample output data is shown in
Fig. 3. The program was written for the special case where all
my =2. The input length NV is 256 with input (1) =1, input
(2) =2, etc. Vector IDATA is the input data vector, IGC is the
group count vector, ICNT is the level count vector, and M is
the group size. IGC, ICNT and M have been initialized to 0, 0,
and 2, respectively, outside the portion of the program seg-
ment shown.

149



INPUTS 1 2 3 45 67 8 9 1011 1213 1415 16

Fig. 1. M-ary summary treefor N =16, M, =2, M, =4, and M; =2

GROUP COUNTERS

-0

LEVEL COUNTERS

-0

_YES 251 NO
2
DOV INPUTS b e e o e e
Qg1
-1
GROUP COUNT (2)
-0 ACCUM=+GROUP
SUM

LEVEL COUNT () ACCUM =— ACCUM [ >m
- LEVEL COUNT () +STORE (2)
+1 OUTPUT ACCUM

<myyq-! | GROUP COUNT (2)

EROUP CONT () STORE (2)=—

- GROUP COUNT () ACCUM
+1

CONTINUE e — e — e — . ————

Fig. 2. Algorithm

150



NVONOO WD~

ISTOP = 256-M + 1

DO 30 J=1,ISTOP, M

L=1

JACCUM = 0

INDEX = J + M =1

DO 25 JJ = J, INDEX

WRITE (3, 60)JJ, IDATA (4J)
JACCUM = IACCUM + IDATA (JJ)

25 CONTINUE
WRITE (3, 65) IACCUM
50 IF (1IGC(L). LT. M-1) GOTO 40

IACCUM = IACCUM + ISTORE (L)

ICNT (L) = ICNT (L) +1

1BEG = M** (L +1)% (ICNT (L) (1) +1

IEND = M** (L +1)* ICNT (L)

WRITE (3, 80) IBEG, IEND, IACCUM, ICNT (L), L

IGC (LY =0
ISTORE (L) =0
L=L+)
IF (L .EQ. 9) GOTO 30
GOTO 50
40 IGC (L) = 1GC (L) +1
ISTORE (L) = IACCUM + ISTORE (L}
30 CONTINUE
INPUT (1) 1
INPUT (2} 2
SUM OF INPUTS 3
INPUT (3) 3
INPUT (4) 4

SUM OF INPUTS 7
SUMFROM 110 4=10

INP UT (5) 5
INPUT (6) 6
SUM OF INPUTS 11
INPUT (7) 7
INPUT (8) 8

SUM OF INPUTS 15
SUMFROM 5TO 8= 26
SUMFROM1TO 8= 3%

Fig. 3. FORTRAN Program sample output, M = 2, N = 256

151



